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Why Do We Care?

We want to make the best treatment decisions based on available
data.

I The single-decision setting:
I A patient presents with a disease and we need to decide what

treatment to give from a list of choices.
I We want to make the best decision (treatment regimen) based

on baseline data.

I The multi-decision setting:
I We wish to treat a patients for a disease with multiple

treatment decisions spread out over time.
I We want to make the best decision based on historical data at

each decision time (dynamic treatment regimen).
I This could include information on responses to previous

treatments.
I The best decisions take into account delayed effects of

treatment.



What are SMARTs?

SMARTs are Sequential Multiple Assignment Clinical Trials. The
key features are:

I Randomizations are done at multiple decision time points.

I Choice of “treatments” to randomize can depend on success
or failure of previously randomized treatments.

I These trials mimic (but with built-in foresight) what happens
in real clinical settings since treatments are sometimes
switched if they are not working or are too toxic.

I These trials are challenging to analyze (require non-traditional
approaches) but we know how to do it.

I They have been used in mental health and addiction research
but less so in other health arenas.



Necessary Non-Standard Analytical Tools

The statistical tools needed for estimation of optimal treatment
regimens are non-standard.

I The single-decision setting:
I Need both regression and maximization.
I Frequentist and Bayesian methods can be used.
I Machine learning (which can be either frequentist or Bayesian)

are useful here.
I The choice of frequentist versus Bayesian is not as important

as the operational properties of the approach (e.g.,
consistency).

I The multi-decision setting:
I Need reinforcement learning, which combines regression and

maximization in a dynamic fashion, to account for delayed
effects.

I Q-learning, A-learning and G-estimation are popular choices.
I Both frequentist and Bayesian approaches are available.



Example 1: Non-Small Cell Lung Cancer

In treating advanced non-small cell lung cancer, patients typically
experience two or more lines of treatment.
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Problem of Interest
Can we improve survival by personalizing the treatment at each
decision point (drug at both and timing at second) based on
prognostic data?



Example 1: Non-Small Cell Lung Cancer

The clinical setting:

I For most patients, there are two lines of therapy.

I Choice of treatment at beginning (1) and end (2) of first line.

I The reward function is overall survival which is right-censored.

Realistic simulated patients (Zhao, et al., 2011):

I Difference equations used to generate patient trajectories for
two clinical measures: tumor size and quality of life.

I A SMART trial was simulated (12 different treatment paths).

I Q-learning was used to estimate decision rules.



Example 1: Non-Small Cell Lung Cancer
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Example 1: Non-Small Cell Lung Cancer

Some statistical issues:
I Machine learning is very useful for handling

I nonlinear structure,
I complex interactions, and
I large numbers of variables.

I Machine learning tools for censored data are very limited
(almost nonexistent) and appropriate extensions are needed.

I Complex treatment decisions (involving multiple drugs and/or
timing) are new challenges for statistical learning.



Example 2: Palliative Care Treatment

The clinical setting:

I In palliative care settings, the goal is patient comfort and
reduced stress for care givers.

I Suppose we wish to know which of two fundamentally
different approaches to palliative care is best initially.

I Suppose we also wish to know what best alternative to give if
patients do not respond to initial treatment.

Scientific and statistical issues:

I This formalizes an intent-to-treat analysis where we explicitly
assess options for non-responders.

I One advantage of a SMART design is the increased power for
assessing treatment strategies since responders can be pooled
with non-responders for some comparisons.

I We also have the ability to incorporate tailoring variables.



Example 2: Palliative Care
Potential palliative care trial design:

Example 2: Palliative Care Trial
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Example 3: Bronchopulmonary Dysplasia in Infants

The clinical setting:

I Sildenafil is effective for preventing bronchopulmonary
dysplasia-associated pulmonary hypertension.

I Crucial to know what dose to use with which patients.

I We designed a Phase II individualized dose finding study.

Scientific and statistical issues:

I The investigators would like the design to be adaptive so that
ineffective or harmful doses are discarded early.

I A statistical challenge is that dose is continuous.

I Since the methodology is complicated, how do we frame the
proposal to satisfy reviewers and obtain approval?



Example 4: Cystic Fibrosis

The clinical setting:

I Cystic fibrosis (CF) is a genetic disease.

I The major pathogen in CF is Pseudomonas aeruginosa (Pa).

I Pa lung infections are at first intermittent but eventually
chronic, leading to harmful mucoid Pa by the late teens.

I Our goal is to find the best treatment each time a patient is
infected to maximize mucoid-free survival from birth.

Realistic simulated patients and trial (Tang, et al., 2012):

I We recruit patients with ages 0–20 years old and follow for
about 2 years for Phase II SMART trial.

I For each episode of Pa infection, we randomize to one of 5
treatments: placebo, AL, AH, BL and BH.

I After SMART trial completion, we use Q-learning to estimate
optimal, personalized treatment choice.



Example 4: Cystic Fibrosis

Comparison of time-to-mucoid infection between optimal
personalized treatment and fixed treatments from SMART trial:
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Example 4: Cystic Fibrosis

Kaplan-Meier plots from 5 year confirmatory Phase III trial of
optimal versus fixed regimens:
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Example 4: Cystic Fibrosis

Some scientific and statistical issues:

I Construction of primary clinical outcome (utility) as a
composite of several outcomes was highly non-trivial.

I The fact that the disease course is so lengthy raises clinical
trial design and regimen estimation challenges.

I The way we addressed this:
I 2-year SMART Phase II trial with variety of ages.
I 5-year Confirmatory Phase III trial also with variety of ages.
I Careful selection of utility to include short time outcomes

predictive of mucoid PA as well as mucoid PA.
I Judicious use of a constant, infinite horizon Q-function.



Example 5: Laser Treatment of Burn Scars

The clinical setting:

I North Carolina Jaycee Burn Center is one of the top burn
centers internationally

I An important issue is the treatment of severe scaring from
burns

I New laser treatments (pulse dye and CO2) available but
unsure of best practice and comparison to standard-of-care
(compression bandage treatment)

I We plan on randomizing patients to sequences of three
treatments to determine best ordering

I Very novel SMART design (tranditional within SMART), IRB
approved and starting any day.



Overview of Statistical Issues

I Non-standard statistical methods must be used, although
weighted linear regression can be used in some settings.

I The best approach is reinforcement learning from artificial
intelligence and related methods.

I The most popular form of reinforcement learning in this
context is Q-learning.

I Q-learning involves multiple stages of regression (one for each
decision time) and allows for many choices at each stage,
including

I linear regression,
I support vector regression (including non-linear),
I random forests, and many other approaches.



Overview of Statistical Issues, cont.

I Complexity of Q-learning and associated Q-functions
I Nonlinearity
I Complicated interactions
I High dimensional data

I Complex decision making
I Drug (treatment) choice
I Timing of treatment
I Dose level

I Censoring (time-to-event limited by end-of-study time)

I Clinical trial design challenges

I Focus in this talk on “frequentist” approaches.



Machine Learning

Machine (Statistical) learning consists of data driven tools for
regression, classification and for other facets of decision making.

Many approaches originated in computer science (artificial
intelligence and machine learning) but have more recently become
part of statistical science (statistical learning).

Examples include:

I Support vector machines (SVM)

I Support vector regression (SVR)

I Random forests

I Reinforcement learning

I Q-learning and A-learning



Incorporating Censoring

Basic issue
The basic issue is that in estimating Q-functions where the
outcome Y is a failure time, we are interest in a conditional
expectation rather than the more standard hazard function in
survival analysis (i.e., we can’t use Cox regression).

Ad hoc approaches

I Censoring is almost never encountered in computer science
based artificial intelligence approaches.

I One could throw out the censored observations.

I Another approach for SVR is to not penalize if the prediction
is above the censored observation and only penalize if below:
this is better than the above but still has significant bias.



Incorporating Censoring

Progress for single decision setting:

I Successfully developed new random forest approach for
censored data, “Recursively Imputed Survival Trees” (Zhu and
Kosorok, 2012).

I The above approach is very computationally efficient and
avoids inverse weighting.

I Extended support vector regression to survival data using
inverse probability of censoring weighting (Goldberg and
Kosorok, 2012a).

I The above approach is consistent, with good error rates, and
performs well, but the inverse weighting requires additional
modeling of censoring.



Incorporating Censoring

Progress for multiple decision setting:

I Ad hoc approach based on decreased penalization for censored
observations performed reasonably well in two-stage
Q-learning for treating non-small cell lung cancer (Zhao, et
al., 2011).

I However, theoretically, the above ad hoc approach can
potentially have unbounded bias.

I Successfully developed Q-learning for right censored data
using inverse probability of censoring weighting (Goldberg and
Kosorok, 2012b).

I The approach is known to be asymptotically unbiased with
good error rates and is computationally reasonable.



Outcome Weighted Learning

1. Let X be the vector of tailoring variables (baseline,
biomarkers, etc.), A be the choice of treatment given, and Y
be the clinical outcome (assuming larger is better for now).
The “standard” approach to finding the optimal decision
function d(X ) is to first estimate the Q-function

Q(x , a) = E [Y |X = x ,A = a]

through regression of Y on (X ,A), yielding the estimated
decision function d̂(x) which assigns the treatment a which
maximizes Q̂(x , a) for the patient’s value of x .

2. The value function of d(X ) (Qian & Murphy, 2011) is the
expected value V(d) of Y given that the decision rule d(X ) is
applied to the given population of patients.



Outcome Weighted Learning (OWL)

Optimal Individualized Treatment Rule d∗

I Surprisingly, finding the decision rule d(X ) which maximizes
V(d), where V∗ denotes the maximum, can be shown to be
equivalent to a weighted classification problem where

I we classify patients to treatment choice A
I as a function d(X ) of tailoring variables X
I but weight by clinical outcome Y divided by propensity score

P(A|X ) (which is known in randomized trials).

I For any rule d , d(X ) = sign(f (X )) for some function f .

I These simple observations allows us to utilize machine
learning techniques for classification relatively directly.





OWL Results

I Fisher consistent and asymptotically consistent.

I Risk bounds and convergence rates similar to those observed
in SVM literature (Tsybakov, 2004).

I Excellent simulation results.

I Promising performance overall (Zhao, et al., 2012a).

I Opens door to application of statistical learning techniques to
personalized medicine.

I Successfully applied to the Nefazodone-CBASP clinical trial
on chronic depression (Keller et al., 2000).



Multi-Decision Outcome Weighted Learning

The data in the multi-decision setting consists of observations of
(X ,A,Y ) at each of T decision times:

I At each decision time 1 ≤ t ≤ T , we replace Xt with Ht

which consists of Xt combined with all of the prior history
contained in (Xj ,Aj), 1 ≤ j < t.

I H1 = X1 since there is no history prior to t = 1.

I Goal: Estimate optimal decisions D = {d1, . . . , dT}, where
dj = dj(Hj), using these data.

I Not just a direct extension of Q function estimation: need to
take into account long term effects.

I A popular approach to obtaining D is through Q-learning
(other approaches include G-estimation, A-learning, and
Bayesian alternatives using the Bellman equation).





Multi-Decision Outcome Weighted Learning

I Can we extend classification to sequential treatments?

I Target value function directly as in OWL.

I Idea: compute the value functions directly as before and
convert the problem to a series of weighted classification
problems so that machine learning techniques can be used at
each decision time starting at the end and going backwards.

I At each decision time, only patients following the optimal
decision for future times are included in the sample.

I We call this Backward Outcome Weighted Learning (BOWL).





Iterative Outcome Weighted Learning (IOWL)

I Concern: only partial data are used in DTR estimation.
I Fix: an iterative procedure for two stage setup:

1. Update d̂2 based on the subset where subjects take the
estimated optimal treatment in stage 1.

2. Similarly, update d̂1 restricted to the subjects who are assigned
with d̂2 obtained in Step 1.

3. Iteration between 1 and 2 stops upon stabilization of the value
functions.

I Includes more subjects that can contribute to stage 1
estimation.

I In theory, both BOWL and IOWL lead to the optimal DTR.

I IOWL works slightly better when implemented.



Simultaneous Outcome Weighted Learning (SOWL)

I Ideally, we want to learn the optimal regimens at all stages
simultaneously.

I To do this, we had to create a fundamentally new kind of
machine learning technique.

I The basic ingredient is a multi-dimensional hinge (on the next
page).

I We can employ quadratic programming via dual problem.

I Easy to generalize to nonlinear decision rules using kernel
trick.



SOWL: Two Dimensional Hinge



Properties of BOWL (IOWL) and SOWL

I Fisher consistency.
I Optimal Value Consistency

I Estimation of optimal DTR within an RKHS.
I The value of constructed DTR via BOWL/SOWL converges to

the best achievable value by any regimens restricted within the
selected RKHS.

I Asymptotic consistency.

I Risk bound
V∗ − V(D̂) ≤ O(n−γ).

I Bound on both estimation error and approximation error.
I Under certain margin conditions (differential treatment

effects), γ = 1.



Simulation Studies

I Methods: BOWL/IOWL/SOWL with Linear kernel;
Q-learning with linear regression; A-learning with linear basis
for regret function.

I Three two-stage scenarios:

1. Linear but Y1 = 0 (hard for Q-learning).
2. Nonlinear.
3. Nonlinear and Y1 = 0.

I Training data sample size n = 100, 200, 400.

I Testing data sample size 10000.

I 500 replications.



Simulation Results: Scenario 1

Figure: Smoothed Histograms of Values of Estimated DTRs (n = 100)
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Simulation Results: Scenario 2

Figure: Smoothed Histograms of Values of Estimated DTRs (n = 100)
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Simulation Results: Scenario 3

Figure: Smoothed Histograms of Values of Estimated DTRs (n = 100)
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Smoking Cessation Study

I Stage I: Project Quit,
I Baseline variables: Age, Gender, Education, Race, Baseline

motivation to quit smoking, etc.
I Treatment: highly or lowly tailored Story (denoted by 1 or -1 ).

I Stage II: Forever Free,
I Intermediate variables: Motivation to quit smoking and Self

efficacy at 6 months.
I Treatment or not (denoted by 1 or -1 ).

I Outcome YQ1 (YQ2): Quit status at j th stage, j = 1, 2.

I Sample size: 281 subjects completed the entire study.



Smoking Cessation Study

I Cross validation type analysis.
I Additional outcomes

I YSj = 1 if the level of satisfaction with the smoking cessation
program is high and YSj = 0 otherwise, j = 1, 2;

I YNj = 0 if the patient had zero abstinent months; YNj = 1 if
1-3 abstinent months; and YNj = 2 if 4 or more abstinent
months during the jth stage.

Table: Mean Cross Validated Values using Different Methods

Mean Cross Validated Values
Outcome BOWL IOWL SOWL Q-learning A-learning

YQ 0.747 (0.010) 0.768 (0.010) 0.755 (0.012) 0.692 (0.008) 0.709 (0.008)
YN 1.550 (0.031) 1.534 (0.040) 1.500 (0.026) 1.487 (0.020) 1.453 (0.023)
YS 1.262 (0.009) 1.288 (0.013) 1.203 (0.015) 1.216 (0.008) 1.183 (0.007)



Open Questions

I Survival outcomes
I Multicategory/Continuous treatments.

I Multiple therapies.
I Continuous range of dose levels.

I Optimize timing to switch treatments in multi-stage trials.

Possible
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Other Open Questions

I Development of meaningful inference tools: this is hard even
for linear regression in Q-learning.

I Develop sample size algorithms or formulas.

I When should parametric or semiparametric approaches be
used instead of machine learning approaches?

I How to design trials for long-term chronic diseases.

I How to elicit and formulate outcomes (utility).

I How to handle continuing reassessment so that previously
developed regimens could be enlarged to include new and
emerging treatments.



Preparing Protocols

I Each setting seems to be unique.

I Often best to frame the trial first as a traditional trial with
randomized treatments and then add personalized medicine
and dynamic treatment regimen aspects as later aims.

I There are ways to frame dynamic treatment regimen
estimation, in some cases, as weighted linear regression.

I Sample sizes roughly correspond to large traditional Phase II
(or small Phase III) designs for SMART trials.

I We are working on sample size software for OWL studies.

I We have completed or are working on about 5 such trials.



Closing Comments

I We know that these methods work and that they are ready to
be utilized in clinical research.

I The methods have the potential to improve patient care
dramatically without full understanding of underlying
mechanisms.

I We know how to prepare protocols and believe that generally
they are approvable by IRBs and funding agencies.

I These approaches require specialized biostatistical knowledge
to design and analyze.

I We invite interested researchers to work with us in designing
and implementing these kinds of studies.

I We are available to help.
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