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Outline 



Bayesians consider model parameters, q,  
to be random and give them “prior distributions.”  
q = treatment effect, median survival, Pr(toxicity) 
 
Bayes’ Theorem   prior(q) +  data           posterior(q | data) 
 
Start with prior(q).  Observe data. Compute posterior(q | data). 
Use it for making inferences about q, making decisions, and 
choosing actions. 
 
Bayesian Learning   If new data are obtained sequentially in 
a clinical trial, Bayes’ Theorem may be applied repeatedly:  
“Posterior” at each stage = “Prior” for the next stage. 
 
 Bayesian inference is based on prior + observed data.  
 Frequentist inference is based on observed data + data 
that might have been observed.  
 

 

Bayesian Statistics  



Some Advantages of Bayesian Statistics  

1. Accounts naturally for multiple sources of variability: 
 Patients, Covariates, Studies, Measurement error 
  
2. Naturally incorporates historical data or expert opinion 
 
3. Hierarchical models provide a basis for combining data from 
multiple sources to do meta-analyses 
 
4. Provides a coherent way to use accumulating data to make 
sequences of decisions 
 
5. Posterior probabilities and credible intervals are easy to 
understand (unlike p-values and confidence intervals) 
  
6. Plots of prior and posterior distributions illustrate knowledge 
 
  



Some Distributions on q = Pr(Response)  



Bayesian Estimation: 95% Posterior Credible Intervals for q  
under 4 different beta distributions, all with mean 2/3  

.28   −   .95 .39   −   .89 

.47   −   .84 .53   −   .79 

[L,   U] is a 95% Posterior CI      if      Prob[ L < q < U  | data]  = .95 



Posteriors based on the 4 possible binary toxicity data 
sets from 3 patients 

Uninformative 
prior on  

q = 
Pr(Toxicity), 
with effective 
prior sample 

size = 1 



Borrowing Strength 
 

Posterior distributions of Pr(Toxicity | d = dose, q) 
under an assumed dose-toxicity model  
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Two Outcomes  
Posteriors of the probabilities pT(dose) of Toxicity and 

pE(dose) of Efficacy in a phase I-II clinical trial,  
based on data from 12 patients 



  q =  Pr(Toxicity) at a fixed dose of an experimental  agent.  

 Observe X = [# toxicities] in 3 patients.  How to estimate  q ? 

Usual estimator:    The sample proportion  = 

[# toxicities] / [sample size] has four possible values:  

 0/3 = 0,    1/3,    2/3,    3/3 = 1    (  0%,   33%,   67%,   100% ) 

But this estimator may not make sense : 

 “I estimate that the probability of toxicity equals 0” says that you 
believe that toxicity is impossible.  

 “I estimate that the probability of toxicity equals 1” says you 
believe that toxicity is certain.  

The usual textook 95% ci for q is  [0,   0] if X=0,   and is [1, 1] if X=1 

 

 

 Why Bayesian?    A Very Simple Statistical Problem  



q =  Pr(Toxicity) is considered to be random.  

Assume a non-informative beta(.5, .5) prior on  q  

Given data X = # toxicities observed in 3 patients,  

the posterior mean of q  is  

    

   (.50)  ¼     +     (X / 3)  ¾ 

  

 

        Prior Mean     Sample Mean 

Bayesian Estimator 



    Frequentist versus Bayesian Estimation  

 

 

 

 

 

Number 

of 

Toxicities 

Sample  

Mean 

Posterior 

Mean of 

q 

Posterior 95%  

Credible Interval for 

q 

0 0 .125 .00015  —  .54 

1 .333 .375 .04 — .82 

2 .667 .625 .18 — .96 

3 1 .875 .46 — .9998 



When constructing a clinical trial design . . . 

 

It is better to kill computer generated patients, 
rather than real ones, when calibrating design 
parameters. 

A Recommendation  



1) The Physician(s) Must Specify 

  Disease, entry criteria 

  Treatments, doses, schedules, multi-stage regimes 

  Maximum N, trial duration, follow up, accrual rate 

  Information to establish a prior 

  Utilities of clinical outcomes (or other criteria) 

  Numerical limits for rules to protect patients.   

  E.g. an upper limit on Pr(toxicity) 

 

2) The Statistician Specifies a Bayesian Probability Model 
for the clinical outcomes as functions of treatments 
(dose,  schedule, etc.) and covariates,  and a design 

 
 

Designing Bayesian Sequentially Adaptive Trials 



3) Write a computer program, if necessary, and  

Simulate the Trial on a Computer to calibrate design 

parameters and obtain good Operating Characteristics :    

   Sample Size, Pr(Select), Pr(Drop) for each 
treatment, dose, or regime   

  Pr(Stop the Trial Early). This should be large in  
 cases where no treatment or dose is acceptable 

 

4) Iterate Steps 1 – 3  until a design that is ethically and 
scientifically acceptable is obtained 

 
 

Designing Bayesian Sequentially Adaptive Trials 



Hierarchical Models  

Illustration: Design a phase II trial to evaluate  

p = Pr(Tumor Response) with Imatinib  

in 10 different sarcoma subtypes (Thall et al. 2003)  

 

Approach 1 : Assume the subtypes have the same  p and 

conduct one trial with one early stopping rule for futility.  

But what if the subtypes have different Pr(Tumor Response) ?  

 

Approach 2 : Assume the subtypes have different  response 

probabilities, p1, …,p10, and conduct 10 trials, each with its own 

stopping rule.  But are the 10 subtypes really independent ?   

Is conducting 10 trials feasible? What about rare subtypes ? 



http://www.chazhound.com/cgi-bin/dog/ppcount.cgi?action=go&num=132


   Bayesian Hierarchical Model 
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5 Independent, Identical Priors 
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Hierarchical Prior, Moderately Informative 



0.2 0.4 0.6 0.8

0
1

2
3

4
5

6
7

.76

.45

.34

.42

.54

0.2 0.4 0.6 0.8

0
1

2
3

4
5

6
7

.59

.47

.40
.44

.52

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

6
7

.60

.43

.31
.46

.52

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

6
7

.49

.45
.41 .47

.49

5 Independent, Identical Priors Hierarchical Prior, Highly Informative 
N

=
1
5
0
 

N
=

5
0
 



Case Outcomes Decision 

Non-

Hierarchical 

Hierarchical 

1 3 subtypes with 0/9 Terminate Terminate 

4 subtypes with 1/9 Continue Continue 

2 2 subtypes with 0/9 Terminate Continue 

2 subtypes with 1/9 Continue Continue 

3 subtypes with 2/9 Continue Continue 

3 3 subtypes with 0/15 Terminate Terminate 

4 subtypes with 1/15 Continue Terminate 

Example of Within-Subtype Futility Stopping Rules  
for 7 disease subtypes in a phase II trial 



1) Allows data from each subtype to provide information about 
pj’s in all of the other subtypes (“Borrowing Strength”) 
 
2) Borrowing strength between subtypes reduces both false 
negative and false positive rates 

3)  Avoids the two undesirable approaches of conducting  

  1 trial assuming 1 common p, ignoring the subtypes 

  10 separate trials that ignore each others’ data, and that 
probably are not feasible 

The hyperprior must be calibrated to accurately reflect strength 
(informativeness) of prior belief or historical data.  

Advantages of Bayesian Hierarchical Model 



 

Diffuse Intrinsic Pontine Gliomas (DIPGs) 

 Very aggressive brain tumors. 

  Median patient age = 5 years 

 No treatment with substantive anti-disease activity 
exists, with median survival < 1 year. 

 Radiation Therapy (RT) is standard treatment, but it is 
mainly palliative.  

 The RT dose-toxicity and dose-efficacy profiles are not 
well understood. 

A Dose-Finding Trial in Pediatric Brain Tumors 



Mild Moderate High Severe 
CNS Asymptomatic brain 

necrosis seen on 
MRI, not attributable 
to tumor progression 

Brain necrosis, not 
attributable to 
tumor progression, 
requiring non-
surgical therapy 

Death attributed to 
radiation treatment 
 
Edema in 
reirradiated brain 
tissue requiring 
surgical 
intervention 
 
Unilateral or total 
blindness 
attributed to 
radiation-related 
optic neuropathy 

Fatigue Lasting <1 month Lasting 1-3 months Lasting > 3 mos 
Nausea / 
Vomiting 

Controlled with 
antiemetics 

Decreased appetite  Started during and 
up to 3 weeks after 
radiation treatment 
that cannot be 
controlled with 
antiemetics 

Headache Headache that 
started during 
radiation treatment 
controlled with 
non-steroidal 
medications 

Headache that 
started during 
radiation treatment 
requiring steroids 

Headache that 
started during 
radiation treatment 
that cannot be 
controlled with 
medications 

Skin Skin erythema in 
rad. field.  Alopecia 

Dry desquamation in 
radiation field 

Moist 
desquamation in 
radiation field 

Oncologists’ Definition of Toxicity Severity Levels 



Toxicity  =  Low, Moderate, High, or Severe  

Efficacy  = Total number of improvements in  

(i) Clinical Symptoms  

(ii) Radiographic Appearance of the Tumor 

(iii) Quality of Life  

      Possible efficacy values  = 0, 1, 2, or 3                

 

 (Toxicity, Efficacy) scored at day 42 

 4 x 4 = 16 possible (Toxicity, Efficacy) outcomes 

Outcomes in the Pediatric Brain Tumor Trial 



 Toxicity Severity 

Low Moderate High  Severe 

 Efficacy 
Score 

0 50 25 10 0 

1 85 50 15 5 

2 92 60 20 7 

3 100 75 25 10 

 

 

 

 

 

 

 

U(Toxicity, Efficacy) are the basis for making decisions adaptively in 
the trial (“learn-as-you go” ), currently ongoing at MD Anderson:   

1) Decide which radiation does are acceptable 

2) Choose the best dose for each successive cohort of 3 children 

Numerical Consensus Utilities 
Elicited from A. Mahajan and H. Fontanilla, co-PIs 

 



 

Toxicity 
 

 

Efficacy 
 

 
 

Joint Outcome Utilities 
 
 
 



 

 

 

 

 

 

Question: If Tox = {Low, Moderate} is “acceptable” but 
{High, Severe} is “not acceptable” why not just use  

 DLT = {High, Severe} and apply a usual dose finding 
method (e.g. the “3+3” or “CRM”) ?  

Answer: U(0,Moderate) = U(3, High) = 25  Scoring these 
two  outcomes as “No DLT” and “DLT” makes no sense!  

Why Bother With Utilities ? 

 Toxicity Severity 

Low Moderate High  Severe 

  Efficacy 
Score 

0 50 25 10 0 

1 85 50 15 5 

2 92 60 20 7 

3 100 75 25 10 



 

1) Accrual rate = 6 to 10 patients/year 

2) N = 30 children maximum, cohorts of size 3  

3) Treat the first cohort of 3 patients at the lowest dose, 
then apply the adaptive utility-based criterion. 

4) Do not skip the middle dose when escalating. 

5) A dose is  unacceptably toxic if is it likely to have  

  Pr(High or Severe toxicity)  > 10% 

 

 

Conduct of the Radiation Therapy Trial 



Computer Simulations: Operating  Characteristics of RT Trial Design 



Computer Simulations: Operating  Characteristics of RT Trial Design 



By design, the first 3 patients were treated at BED level 1. 

 

At BED level 1  n=4 patients had outcomes :  

 

 

 

 

At BED level 2 : n=1 patient had  outcome  

    (Eff, Tox) =  (1, Low), for Utility = 85 

               

 

 

Some Early Trial Results 

(Eff, Tox)  (0, Mod)  (2, Mod) (1, Low) (2, Low) 

Utility  25 60 85 92 



Goal: Develop a practical phase I-II trial design to adaptively 
optimize each patient’s doses in two cycles of therapy, using 
binary (Toxicity , Efficacy) in each cycle. 

Methodology: Base cycle-specific actions on numerical utilities 

1. Actions (a1 a2) in each cycle : Treat with the “optimal” dose, or 
possibly “Do not to treat (NT)” 

2. Bayesian hierarchical dose-outcome model 

3. Safety: Include dose acceptability rules 

4. Optimize (a1 a2): Backward induction   

using posterior means of a utility-based  

objective function 

 

 

 Dose Finding Based on Efficacy and Toxicity in 
Two Treatment Cycles 



Bellman’s Idea: First find a2
opt by considering all possibilities, then 

work backwards to find a1
opt, assuming that a2

opt will be taken. 

Finding (a1
opt, a2

opt) is not the same thing as optimizing doses 
separately in each cycle.   

Example: (d1
opt, d2

opt)  = (3, 2) but (a1
opt, a2

opt)  = (3, a2
opt) where  

 a2
opt (d1=3, No Tox1 , Eff1 )           =  3       

 a2
opt (d1=3, No Tox1 , No Eff1 )   =  4     

 a2
opt (d1=3, Tox 1,        Eff 1 )

           =  1        

 a2
opt (d1=3, Tox1 ,         No Eff1 ) =  NT     

 

 Actions versus Doses 



Eff and Tox are each defined using latent (unobserved) 
continuous variables to facilitate computation   

The model includes random patient effects 

Pr(Eff) and Pr(Tox) each increase with dose 

Numerical dose values are not used, just indices  

 d=1, 2, 3, 4, 5 

Prior parameters were calibrated to have overall prior 
effective sample size < 2.0 

 Properties of the Hierarchical Model 



 

 Utilities 

 

 

 Cycle 2 Objective Function  q2(a2 , d1, Eff1, Tox1) =  

Expected utility of action a2 in cycle 2  if d1 was given in 
cycle1 and the outcomes were (Eff1, Tox1) 

Cycle 1 Objective Function  

q1 (d1) =  {Expected utility of giving d1 in cycle 1}  

+   .80  {Expected utility in cycle 2 if d1 is given in cycle 1 
and a2

opt is taken in  cycle 2 } 

 

Objective Functions 



Additional Constraints 
 
Because we do not completely trust our model  
 
Dose Acceptability  
 
d1 is unacceptable if E{Utility(d1)} < 35 = U(0,0)  
 
d2 is unacceptable if E{Utility(d1,Eff1,Tox1}  < 35  
 
 
Safety Constraints  ( to reflect actual clinical practice ) 
 
1. In each cycle, do not skip an untried dose when escalating 

 
2. Do not escalate in cycle 2 if TOX was observed in cycle 1 
 
 

 



Adaptive Randomization 
 
A Major Practical Problem:  
 
“Greedy” algorithms that always optimize some criterion risk 
getting stuck at a suboptimal action. 
 
A Practical Solution:   
 
For each cycle, given the current data, first identify the 
acceptable doses / actions.   
 
Adaptively Randomize among the doses /actions that have 
posterior expected payoff (objective function value) “close” to 
the maximum value. 
 
 
   We call the 2-cycle method DTM2 



5 dose levels, 60 patients in 30 cohorts of size 2 

1.  Cohort 1 treated at d = 1 in cycle 1, their (Eff1 ,Tox1)  
observed, posterior is computed, and cycle 2 actions 
a2 taken.  When (Eff2 ,Tox2) observed from cycle 2, re-
compute the q1 and q2  

2. Cohort 2 enrolled after cohort 1 has been evaluated 
for cycle 1. 

3. For cohorts 2, 3, ... , compute the optimal actions and 
use AR to choose the actions in each cycle. 

4. Repeat steps 1 – 3 until trial stopped early, or N = 60  

  

Trial Conduct 



We compared the DTM2 design to 2-cycle extensions of 
3+3 algorithms and the continual reassessment 
method (CRM) 

(3+3)a implicitly targets d with P(TOX | d)  < 0.17 

(3+3)b implicitly targets d with P(TOX | d)  < 0.33 

The extended (3+3) methods both choose d2 as follows: 

If TOX1, then d2 = d1-1      (Tox in cycle 1  de-escalate) 

If NO TOX1 , then d2 = d1  ( No Tox in cycle 1  repeat d1) 

2-Cycle Comparators: 3+3 Methods 



Two-cycle extension of the CRM: 

Cycle 1 : Choose d1 with posterior mean Pr(TOX) closest 
to 0.30, the usual CRM, but impose the “do not skip an 
untried dose” rule. 

Cycle 2 : Choose d2 using the same adaptive rules as for 
the extended (3+3) methods.  

Also, d2 is unacceptable, given d1, if it makes it likely that  

Pr(at least one toxicity in two cycles | d1,d2)  > .50. 

 

2-Cycle Comparators:  CRM 



Computer Simulation Scenarios 

d=1,2 safe, d=3,4 toxic, no 
doses efficacious  Stop 
is best 

 

Tox is OK, big payoff if 
escalate to higher doses 

Complex, very important to 
account for cycle 1 
outcomes in choosing a2    

 

Optimal doses are what 3+3 
and CRM choose. 

 



d=1,2 safe,  

d=3,4 toxic,  

no doses 

efficacious  

Stop is best 

 

 

Tox OK,  

big payoff  

if escalate to 
higher 
doses 

 

Complex, 
important 
to account 
for cycle 1 

outcomes in 
choosing a2    

 

 

Optimal doses 
are what the 
3+3 and CRM 

happen to 
choose. 

 

Computer Simulation Scenarios 



Optimal Actions Under the 4 Scenarios 



Percent Completed Trials 

In Scenario 1, DTM2 correctly decides all doses 
are inefficacious and stops the trial 97.7% of the 
time. The other 3 methods all ignore the low 
efficacy and are very likely to continue. 



 

Qselect(a) = Expected total payoff, over 2 cycles, to a future 
patient treated with  a = (a1,a2) 

 

   =   Mean total payoff, over 2 cycles, for the patents 
   in the trial 

 

Pr(TOX) = Empirical Pr( TOX ) over both cycles  

Pr(EFF)  = Empirical Pr( EFF ) over both cycles  

 

Computer Simulations: Evaluation Criteria  
 



Summary of Simulation Results  



 

 
Motivating Application: The SPARC trial to treat 
patients with Metastatic Renal Cell Cancer (MRCC) who 
have not had previous systemic therapy (N. Tannir, PI) 

 

Standard treatments are ineffective, median(DFS) ≈ 8 mos 

 

Three “targeted” treatments studied in 240 MRCC 
patients, using 6 two-stage within-patient Dynamic 
Treatment Regimes (DTRs) of the form  

  (frontline agent,    salvage agent at progression) 

 

Two-Stage Treatment Strategies Based On Sequential 
Failure Times  (Thall, et al., 2007)  



Bevacizumab 

Pazopanib 

Temsirolimus 

Three “Targeted Agents” for Metastatic Kidney Cancer 



A Within-Patient Two-Stage Treatment Assignment 
Algorithm (Dynamic Treatment Regime) 

 SPARC Trial Treatments:  

  b = bevacizumab, s = sunitinib, t = temsirolimus 

 

Stage1 of Therapy  

 

At entry, randomize the patient fairly among { b, s, t } 

 

Stage 2 of Therapy  

 

If the stage 1 failure is disease progression and not 
discontinuation, re-randomize the patient fairly between 
the two treatments not received initially 

  “Switch-Away From a Loser”  

 



1st Line 

b 

s 

t 

2nd Line Strategy 

s 

t 

b 

t 

b 

s 

(b, s) 

(b, t) 

(s, b) 

(s, t) 

(t, b) 

(t, s) 
1st failure 2nd failure 



Clinical Outcomes 

 T1 = Time to 1st treatment failure 

 Y  = I [Patient continues to 2nd stage] = 0 or 1 

 T2 = Time from 1st to 2nd treatment failure 

 T = T1 + Y T2 = Time to final treatment  failure   

           E( T ) = E(T1) + Pr(Y =1) E(T2) 

Mean time  

to 1st failure 

Pr(1st failure is  

Disease Progression) 

Mean time  

to 2nd failure 



Advantages of Re-Randomization  

Unbiased comparisons of the effects of the  

two-stage treatment strategies on time to final failure : 

  (b, s) ,  (b, t),  (s, b),   (s, t) , (t,  s) ,  (t, b)  
      

 

The design accounts for the possibility that the effect of  

 b given after s may not be the same as the effect of  

 b given after t 

Goal: Select the 2-stage strategy with largest mean time to 

final treatment failure 

 



Complications 

1) Because disease is evaluated repeatedly (by MRI or 
PET scan), either T1 or T1 + T2 may be Interval 
Censored 

2) There may be a delay between 1st failure and start 
of stage 2 therapy 

3) T1 may affect T2 

4) For metastatic renal cancer, the failure rate typically 
increases over time 

 



A Tale of Four Designs 

Design 1 (February 21, 2006) 

N=240, 12 two-stage strategies, 16 patients per strategy 

Design 2 (April 17, 2006) Following “advice” from CTEP, NCI  

N = 240, 6 strategies, 32 patients per strategy 

Design 3 (January 3, 2007)  CTEP no longer interested, but several 
Pharmas were now VERY interested  

N = 360, 6 new strategies, 48 patients per strategy 

Design 4 (May 15, 2007): N=240, and a Bayesian Weeding Rule was 
added:  When 120 patients are fully evaluated,  

 stop accrual to strategy (a,b) if  

   Pr{ m(a,b) < m(best) – 3 mos | data} > .90 

In words: Drop a strategy if it is likely to have overall mean DFS more 
than 3 months smaller than the mean DFS of the best strategy  

 

 

 

 



Simulation Scenarios were specified in terms of  

 

 m1(A) = median (T1 | A)  

 

 m2(A,B) = median { T2,2 | T1 = 8, (A,B) } 

  

 Null values were  m1 = 8  and  m2 = 3 months 

  

  m1 = 12  months  Good frontline 

  m2 = 6    months  Good salvage 

  m2 = 9    months  Very good salvage 

 

 

 

Computer Simulations 



Simulation Results w/o the weeding rule 

(b, s) (b, t) (s, b) (s, t) (t, b) (t, s) 

1 m 15.7 15.7 15.7 15.7 15.7 15.7 

% select 15 17 17 18 17 16 

2 m 19.4 19.4 15.7 15.7 15.7 15.7 

% select 52 48 0 0 0 0 

3 m 15.7 18.8 15.7 18.8 15.7 15.7 

% select 0 49 0 51 0 0 

4 m 19.4 23.3 15.7 15.7 15.7 15.7 

% select 0 100 0 0 0 0 

5 m 15.7 18.8 15.7 22.0 15.7 15.7 

% select 0 3 0 97 0 0 

6 m 12.5 12.5 15.7 15.7 15.7 15.7 

% select 0 0 28 25 25 23 



Acc 

rate 
(b,s) (b, t) (s,b) (s, t) (t, b) (t, s) 

m 15.7 18.8 15.7 22.0 15.7 15.7 

12 Pstop  .68 .24 .78 .01 .69 .70 

N 45 51 44 59 45 44 

9 Pstop  .68 .25 .81 .01 .67 .71 

N 41 55 39 72 42 40 

6 Pstop   .68 .22 .82 0 .68 .69 

N 37 59 34 84 37 36 

Sims with Weeding Rule (Scenario 5) 



Utilities quantify trade-offs between adverse and efficacy 
events  An ethical basis for adaptive decision-making. 

 

Bayesian Statistics provides a practical basis for design 
and conduct of complex clinical trials. 

 

Computer Simulation is an essential tool for calibrating 
design parameters.  

 

Accounting for Multiple Stages is much more realistic. 

 

Major Caveat : Developing statistical models, methods, 
and computer programs is extremely time-consuming. 

 

 

General Conclusions 
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