Developing an open source simulation model of physician supply and healthcare utilization

Mark Holmes, PhD AAMC Workforce Conference

May 3, 2012 | Washington, DC

This two-year project is funded by a grant from the Physicians Foundation.

Presentation Outline

- Project Goals (briefly)
- Overview of current model
 - Outline key questions
 - Solicit feedback
- Discussion

- Main objective: Create open source physician projection model to be used by policy makers
- Additional goals: Promote dialogue among physicians, policy makers, medical societies, state and federal workforce planners, health systems and others about need to:
 - Not generate a single "right" answer
 - Develop scenarios that allow users to simulate policy effects
 - Engage clinicians in planning for the size, shape and specialty mix of the future workforce

A schematic view of how the three pieces fit together to produce a projection

- The following slide presents a high level, schematic view of how three key elements of our model fit together
 - Utilization
 - Supply
 - Linking demand for health services with supply of providers
 - to create estimates of
 - A. Physician supply (by time, location, training, characteristic, e.g.) as a function of contextual elements
 - **B.** Relative adequacy of supply for population health needs

We are modeling *utilization*, not demand, not need

- What's the difference?
 - Need "biological"
 - Demand incorporates ability and willingness to pay
 - Utilization the demand that is realized i.e. the number of services consumed
- The population uses thousands of different kinds of health services – can we aggregate these into a manageable number?
- Aggregation method: Clinical Classification System (CCS), AHRQ algorithm, defined by ICD-9 diagnoses

We are modeling utilization in four settings

- We are using four settings of services
 - Office-based provider
 - Hospital-based care: inpatient and outpatient settings
 - Emergency room
- Combined with the 18 CCS, we have 4 x 18 = 72 different kinds of services utilized

Sources for data on utilization

- Primary data source is Medical Expenditure Panel Survey (MEPS)
 - Annual survey by AHRQ, contains setting and CCS for approximately 30,000 individuals per year
 - We have combined multiple years
- Allows us to estimate the effect of key factors known to influence utilization, and then develop *areal* rates:
 - **Sociodemographics**: age, income, insurance coverage;
 - Health & Risk: obesity, smoking, etc. (e.g. BRFSS)

Area contextual data has differing effects across types of services

Predicted Mental Health and Respiratory Office-Based Visits (OBV) Per Capita

THE CECIL G. SHEPS CENTER FOR HEALTH SERVICES RESEARCH This project is funded by a grant from the Physicians Foundation

Health & Risk (certain conditions, insurance status)

condition (e.g. inpatient cardiovascular; "Plasticity" outpatient mental) **Local Amenities** Socioeconomics of **Provider** community **Sociodemographics** PROVIDER SUPPLY (age, gender, n an area by "type" race/ethnicity, specialty)

by type of service /

Geographic factors (rurality, malpractice environment)

Factors affecting supply directly

Supply & Policies Current stock; residency slots; scope of practice

Modeling supply like the real world

Agent-based model for physicians

- Use existing data, literature on physicians and their behavior to simulate the behavior of hundreds of thousands of physicians
 - My decision affects your decision
- Physician assistants and nurse practitioners included in model, but not as an "agent"
 - Quality of data, science on their behavior less well developed

How can decisions on location choice ("diffusion") be modeled?

Table 4: Conditional Logit Model Results for Physician Location Choice

	OB/GYNs	Surgeons	PCPs		
Malpractice premiums (US\$1,000s)	$\begin{array}{c} 0.0076 \\ (0.0087) \end{array}$	- 0.0235 (0.0073)**	0.0264 (0.0158)	Source:	
Damage award cap	0.1482 (0.6248)	1.3004 (0.4051)**	0.0561 (0.2417)	Chou and Lo	Sasso, 2009
Health professional shortage area	0.4580 - (1.4424)	- 0.8410 (1.0801)	1.2158 (0.3798)**		
			4		
	:II. www.viele	Co	County		Probability
Results of the analysis w	III provide	Au	Autauga County, AL		0.3%
determine the probabilities	used to	Bal	Baldwin County, AL		0.6%
	IES OI	Bar	arbour County, AL		0.4%
moving to each county		Bib	3ibb County, AL		1.4%
		Blo	ount County, AL		0.8%

Diffusion

- Model attractiveness of location by
 - Age
 - Gender
 - Specialty
 - Area characteristics

Example: I'm a 45 year old male surgeon with a 25% chance of staying here, 5% chance of going to Charlotte, 1% chance of Nashville, .002% chance of Michigan's Upper Peninsula

Provider "Clinical Service Areas"

- Key question: How many different types of physicians can we model?
 - Too few aggregating dissimilar specialties
 - Too many model loses precision
- Our target was 8-10
- Current list = 34

Mapping services to providers

"I think you should be more explicit here in step two."

- Key decision: no silo-based modeling
 - Recognize the "fungibility"
 of services across
 specialties
- How to model a specialist's range of services?

Translating utilization against supply

- We refer to this concept as the "transmission" or "plasticity"
- For example, family and general practitioners* have considerable heterogeneity in the distribution of visits by CCS...

* We recognize that these specialties are different, but NAMCS groups them.

A random sample of ten GPs/FPs has heterogenous scopes of services

Services Provided 100 Other Symptoms & signs Musculoskeletal 80 Skin Respiratory Percent of Visits Circulatory 60 Nervous system Mental Endocrine/immunity 40 Respiratory 20 Circulatory Endocrine 0 3 5 6 10 1 2 7 8 9 4 Skin Individual GP/FP

Scopes of services for 10 GP/FP in NAMCS

THE CECIL G. SHEPS CENTER FOR HEALTH <u>Services research</u>

This project is funded by a grant from the Physicians Foundation

...But dermatologists provide relatively similar scopes of services

Scopes of services for 10 Dermatologists in NAMCS

The cecil G, sheps CENTER FOR HEALTH SERVICES RESEARCH This project is funded by a grant from the Physicians Foundation

Takeaway

- Heterogeneity in scope of service varies within specialty (not all doctors have similar scope of service)
- Degree of heterogeneity varies across specialty (some specialties have more similar doctors)
- Key question: What determines the specific scope of services among physicians with similar training?
 - □ Are they responsive to relative local demands? How much?
 - What factors modify a physician's "responsiveness" e.g., age?

Things the model (as we currently envision it) can model

Appeal of this (and all other supply models) is ability to "sandbox" policies and trends:

- Change in FTEs by cohort
- Demand for specific services
- Tort reform
- Changes in scope of services
- GME changes

a grant from the Physicians Foundation

- Increase in retirement age
- New payment models

Things the model (as we currently envision it) CANNOT do

There are some things the model does not have a "hook" for – cannot bring in:

- Differences in physician quality (e.g. differential pay for performance)
- Changes in medical school graduate preferences (e.g. more recruitment from rural communities)
- Feedback from physicians to area health status (e.g. underserved area with undermanaged diabetes leads to higher rates of complications)

The appeal of our open source design

 Intentional design and implementation to enable extensions to the model for alternative tasks

Example: You could tailor for surgical workforce focus by disaggregating surgical specialties and utilization (and aggregating non-surgical specialties). Operationally, with new parameters and data, the model could adapt relatively easily.

Model deployment

- Vision: web-based, but also platform-independent model
 - (eg downloadable Java program calls data stored at central server)
- Temporal, geographic projections
 - Tables, figures, maps(?)
- Computational issues:
 - One year of a physician's life take approx .002 seconds
 - Times 500,000 physicians
 - Times 20 years
 - = 14 hours
 - If we want confidence intervals, * 100? = 8 weeks!!

Contact info

- Erin Fraher, PhD
 - Principal Investigator
 - erin fraher@unc.edu
 - **919-966-5012**
- <u>http://www.healthworkforce.unc.edu</u>

Discussion

