Health Workforce Modeling: Past, Present and Future Challenges and Opportunities

Erin P. Fraher PhD MPP
Assistant Professor, Departments of Family Medicine and Surgery
Director, Program on Health Workforce Research & Policy
University of North Carolina at Chapel Hill

AAMC Health Workforce Conference
May 3, 2012
Acknowledgements

Collaborators:
Mark Holmes
Andy Knapton
Tom Ricketts
Don Pathman
Katie Gaul
Marisa Morrison
and a host of other “characters”

Funding:
Physicians Foundation
Presentation

- A sandbox approach to this presentation
- Limitations of past models
- Overview of our physician projection model
- Challenges
 - Geography
 - Utilization
 - Supply
 - Plasticity
 - Accounting for error
 - Dynamism and relevance
 - User interface
Improving the science of workforce modeling by collaboration in the “sandbox”

It is important to abide by the rules of the sandbox:

- Throwing sand is never OK.
- Being mean will eventually result in you playing, unhappily, on your own.
- No taking other people’s buckets without asking
- No kicking or breaking other peoples sandcastles

http://chrislincoln.hubpages.com/hub/Playing-Nice-In-The-Sandbox
Critiquing Current Models
(a partial list of overgeneralizations)

- Silo-based projections by physician specialty
- Most are national or state-based models
- Focus on generating one “right answer”
- Inability to evaluate and compare scenarios
- Lack clinical and health system input
- Proprietary (read: black box) & uncustomizable models
- Lack friendly (and sexy) user interface
UNC’s Physician Projection Model Aims to Build, and Improve, on Past Models

- **Main objective**: Create “open source” model to project physician shortages and surpluses
 - Version 1.0 that can be built upon

- **Additional goal**: Promote dialogue about need to:
 - Engage clinicians in planning for the future workforce
 - **Not** generate a single “right” answer
 - Develop scenarios to allow users to simulate policy effects
 - Create “sandbox” to improve “science” of workforce projections
At what unit of geography should, and can, we do projections?
Factors influencing unit of geography for workforce projections: conceptual issues

- **Utilization/Supply**: What is service area? What services do we need to plan for locally versus regionally?

- **Audience**: Who is using model and what types of decisions and policy actions are made at each level?
 - National
 - State
 - Sub-state
 - Sub-county
Factors influencing unit of geography for workforce projection: practical considerations

- Data availability. County-level data are generally available for most data.

- **BUT** predicted supply and utilization at the county level may be “lumpy” for counties with small population.

- **Our approach**: model at the county level, but report only at larger units. Our unit is a “tertiary service area” – based on Dartmouth’s Hospital Referral Region but “snapped” to county boundaries.

- Health system consolidation and move toward ACO and ACO-like structures argue for larger planning units.
Our “TSAs” align pretty well with HRRs, although closer in East.
Modeling utilization

- Should we model utilization, demand or need?
- How to categorize types of care people are seeking?
 - created 19 “buckets” of Clinical Service Areas (e.g. respiratory conditions, circulatory conditions, endocrinology, mental health, preventative care etc.)
- How to model where people seek care?
 - modeling utilization in 4 medical settings: physician offices, hospital inpatient settings, hospital outpatient settings and emergency departments
But that’s just the baseline—how to model changes in utilization?

- Bundled payments, readmission fines and shared risk models will shift health care and health workforce to community-based settings. Can we model this shift?

- New payment and care models will also:
 - **incentive task shifting**: Will this actually reduce utilization of physician services? Will effect vary by clinical service area and geography?
 - **change types of services for which people seek care**: model for more prevention and fewer inpatient services?

- Are we harvesting knowledge about workforce implications of CMMI’s innovation pilots to redesign health care system?
Importance of clinical and health system input

- Need dynamic, relevant workforce models
- Health system input—these are the folks making workforce employment and training decisions!
- Clinician leader input
 - Check “face validity” of data, assumptions, outputs
 - Provide “best clinical guess” when data lacking
 - Identify and prioritize scenarios to model
 - Input on model interface and outputs
Forecasting the Supply of Physician Services in Headcount and FTE

- Training Pipeline
- Current workforce
- Diffusion
- Retirements
- Re-entry
- Ratio HC/FTE
- Projected future workforce
- Attrition
Forecasting the Supply of Physician Services in Headcount and FTE

- Training Pipeline
- Diffusion
- Current workforce
- Retirements
- Attrition
- Re-entry
- Ratio HC/FTE
- Projected future workforce
How to create a manageable number of workforce specialties to model?

- **Need to**
 - reduce the number of specialties to a manageable number
 - assign single specialty to each physician

- **Modeling 36 specialties in 5 “buckets”**
 - Adult Medical Specialties
 - Adult Surgical Specialties
 - Adult Primary Care Specialties
 - Pediatric Medical and Surgical Specialties
 - Other Specialties

- **Assigned physician specialty using AMA and ABMS data**
Forecasting the Supply of Physician Services in Headcount and FTE

GME Pipeline

Current workforce

Diffusion

Retirements

Re-entry

Ratio HC/FTE

Attrition

Projected future workforce
GME Pipeline

For each year, each specialty, need numbers entering training by:

- Gender
- Location
- Age
- Length of training
- Annual attrition
- Branching and switching

- NRMP data limited, need full census from GME Track
Forecasting the Supply of Physician Services in Headcount and FTE

- GME Pipeline
- Current workforce
- Retirements
- Attrition
- Re-entry
- Ratio HC/FTE
- Projected future workforce

Diffusion
Modeling Diffusion: Newly trained and existing workforce need to be diffused out to different geographies according to “push” and “pull” factors.
Forecasting the Supply of Physician Services in Headcount and FTE

- GME Pipeline
- Current workforce
- Diffusion
- Retirements
- Re-entry
- Attrition
- Ratio HC/FTE
- Projected future workforce

This project is funded by a grant from the Physicians Foundation.
Modeling Patient Care FTE

- Model variation by:
 - Gender
 - Age
 - Specialty
 - Generational effects?

- How do hours worked relate to productivity?

- How to model retirement and re-entry?
Once you’ve produced an estimate of utilization and supply, you have to map services to providers

- Key decision: allow for “plasticity” that recognizes the “fungibility” of services between specialties
- How to model a specialist’s range of services?
Our Approach to Modeling Plasticity:
A Sample Matrix

Within a CSA, how are visits distributed across specialties

<table>
<thead>
<tr>
<th>SPECIALTY</th>
<th>Neoplasms</th>
<th>Circulatory</th>
<th>Respiratory</th>
<th>Pregnancy/ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARDIOLOGY (HEART)</td>
<td>145,802</td>
<td>34%</td>
<td>593,326</td>
<td>898</td>
</tr>
<tr>
<td>DERMATOLOGY (SKIN)</td>
<td>11,913,249</td>
<td>0%</td>
<td>187,179</td>
<td>16,234</td>
</tr>
<tr>
<td>FAMILY PRACTICE</td>
<td>1,772,218</td>
<td>38%</td>
<td>19,943,025</td>
<td>1,264,030</td>
</tr>
<tr>
<td>GYNECOLOGY/OBSTETRICS</td>
<td>2,575,715</td>
<td>1%</td>
<td>17,533</td>
<td>29,821,750</td>
</tr>
<tr>
<td>INTERNAL MEDICINE</td>
<td>4%</td>
<td>54%</td>
<td>40%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Within a specialty, how are visits distributed across CSAs?
Why do people accept uncertainty with a hurricane forecast and not with a workforce projection?
Building a user-friendly sexy interface (1)

Building a user interface that:

- Provides transparent information about data, assumptions, and model design

- Produces useful and interactive data displays:
 - Shows alignment of supply and utilization (shortage/surplus)
 - Baseline and projected supply & distribution
 - Specialty, Age, Gender, Headcount, FTE
 - Absolute numbers, relative to population, percent change
 - Baseline and projected utilization (# of visits) by Clinical Service Area and setting
Building a user-friendly sexy interface (2)

Need to build a user interface that:

- Allows user to compare baseline to probable system changes using scenarios
- Allows user to compare changes:
 - Over time
 - Between geographic areas: state to nation, HRR to state
 - Between specialties
Erin Fraher, PhD
Principal Investigator
erin_fraher@unc.edu
919-966-5012

http://www.healthworkforce.unc.edu